被动式太阳能集热蓄热墙对室内湿环境调节作用的研究
- 低碳节能建筑设计的相关问题及解决方法
- 江苏建筑职业技术学院图书馆设计文化理念
- 四川雅安名山县涌泉村抗震小学的设计理念
- 四川汶川5.12大地震的启示
- 汶川大地震震中纪念馆的创作思考
- 洛阳洛南新区雅安新城结构设计
- 绿色居住建筑的节地设计
- 广州珠江新城海心沙地下空间建筑设计方案
- 黔东南地区郎德苗寨民居的热适应性
- 西气东输工程中长输管道站场建筑模块化设计与应用
内容提示:本研究在两间分别采用被动式集热蓄热墙体和普通保温节能墙体的同实体大的实验房屋中,利用多点温湿度及风速的计算机巡回监测系统等,对室内外温湿度、风速、太阳辐射强度及墙体内温度等参数在采暖期进行了长期实测,并通过对大量测试数据的分析,对被动式太阳能集热蓄热墙体对室内湿环境的调节作用进行了深入地实验研究,同时对由于采用集热蓄热墙体所带来的湿环境的明显改善进行了机理分析。
摘要:本研究在两间分别采用被动式集热蓄热墙体和普通保温节能墙体的同实体大的实验房屋中,利用多点温湿度及风速的计算机巡回监测系统等,对室内外温湿度、风速、太阳辐射强度及墙体内温度等参数在采暖期进行了长期实测,并通过对大量测试数据的分析,对被动式太阳能集热蓄热墙体对室内湿环境的调节作用进行了深入地实验研究,同时对由于采用集热蓄热墙体所带来的湿环境的明显改善进行了机理分析。(参考《建筑中文网》)
关键词:湿迁移 被动式采暖降温 湿环境 建筑节能
1 引言在寒冷地区,由于建筑外围护结构湿传递所带来的建筑热性能和寿命降低、影响人体健康或舒适性等方面的问题是非常严重的,为此,通常采用的方法是加强外围护结构的绝热保温性能或适时地进行通风换气。随着建筑节能相关的规范标准的颁布实施,外墙的结露问题得到了较好的解决,但外窗的结露现象依然普遍存在。
国内外针对由于湿传递所产生的问题进行了大量的研究,如:利用A.B.Luikov热湿迁移理论分析墙体迁移对其隔热性能的影响[1]、各种外围护结构湿传递过程的理论和实验研究[2]~[9]、湿传递对导热负荷的影响[10]等。在进行多孔介质中湿传递过程的理论分析时,由于存在着过程的非线性特征、滞后现象、非等温等难点,多采用简化计算方法;而在实验研究中,由于测定含湿多孔体中局部含湿量的变化非常困难,难以对墙体内湿传递过程进行准确的分析。有研究提出了利用测定温度分布来测量瞬时湿分布的方法[11],但其理论依据没有考虑相变的影响。
本研究在两间南外墙分别采用被动式集热蓄热墙体和普通保温节能墙体的同实体大的实验房屋中,利用多点温湿度巡回监测系统,对室内外温湿度、太阳辐射强度、外围护结构表面温度及集热蓄热墙体内温度等参数进行了实测,并通过对大量测试数据的对比分析,对被动式太阳能集热蓄热墙体对室内湿环境的调节作用进行了深入地实验研究。
2 实验方法2.1 实验房
实验房(图1)建造在大连理工大学校园内、两间房屋南墙分别采用新型被动式集热蓄热墙体和普通保温墙体,其余墙面均采用100mm的苯板外保温加300mm厚煤渣混凝土空心砌块、屋顶100mm苯板外保温,门窗均采用绝热性能优良的单框双层中空玻璃门窗。图1的右侧为被动式太阳能实验房(以下简称太阳房),左侧为对比房。集热蓄热墙体的外侧采用的是透光性和绝热性能好的玻璃幕墙,玻璃幕墙与集热蓄热墙之间的空气间层内安装有遮阳帘,集热蓄热墙体和对比房南外墙结构及相关的物性参数如图2所示。
图1 实验房外景图
(a) 对比房南外墙 (b) 太阳房南外墙
图2 墙体结构及物性参数示意图
2.2 测试方法
温湿度测点布置如图3所示。室内的壁面温度及墙体内的温度测量均采用多通道计算机巡回检测系统自动记录、室内中心点和空气间层内的温湿度测量采用日本产数字式温湿度测试仪(TR-72S)、室外的温湿度数据采用美国产微型气象站连续自动记录,数据记录时间间隔均为10分钟。图3中的EDPT和RDPT分别表示实验房和对比房中心点的露点温度、RHE和RHR分别表示其相应位置的相对湿度、其余符号表示其相应测试点的温度,测点均布置在房间的中心高度。
图3 温湿度测点布置图
3.1 不同墙体作用下室内含湿量的变化
(a)11月(刚竣工)
(b) 12月
(c) 1月
图4 不同墙体对室内含湿量影响的逐时迁移变化图
实验房于2003年10月底竣工,墙体内含水量较高,尤其是太阳房在混凝土浇注过程中掺入了大量的水分,图4表示了竣工后不同时间段,不同的墙体结构和室外气候条件对室内含湿量的影响。由图4(a)可知,阴天时,太阳房室内含湿量比对比房高;晴天时,由于太阳光直接照射到集热蓄热墙体上,集热蓄热墙向室外侧空气间层的水分蒸发较快,使太阳房室内的含湿量明显低于对比房;随着时间的推移,太阳房和对比房的室内含湿量均保持在一个相对平稳的状态,但对比房的含湿量明显地高于太阳房,(图4(b), (c))。另外,由图4(b)、(c)可知,0:00至10:00左右,阴天时的室内含湿量高于晴天,15:00以后,结果相反,同时还可以了解到室外气候变化对对比房含湿量的影响逐渐减弱。
3.2 表面结露分析
在测试期间,由于室外气温较低,实验房门窗几乎处于全关闭状态,空气间层和室内外相对湿度随时间的变化如图5所示。由图5可知,对比房的室内相对湿度在3/4的时间段里高达80%,最低也在60%左右,比实验房约高20%。被动式太阳能墙体的空气间层,受太阳辐射的作用,相对湿度(RHAL、RHAR)远低于室内侧的相对湿度(RHE),使集热蓄热墙体的湿传递为从向室内和空气间层的双向传递过程过渡到向空气间层的单向传递,太阳房内的相对湿度由于被动式太阳能墙体吸放湿特性而保持一个适宜的湿度状态。图6表示的是在同样的试验条件下,太阳房和对比房室内侧门窗、南外墙壁面温度以及室内露点温度的随时间变化情况,图中符号参见图2。由图6可知,由于集热蓄热墙的作用,太阳房南外墙室内侧壁面温度(EWL、EWR)比对比房(RWR、RWL)高约3~5℃,太阳的日出日落运行规律,使太阳房南外墙室内侧壁面温度产生一定的波动,而对比房则变化不大。虽然两个房间室内温度相差不大(1~1.5℃左右),但由于对比房的高湿环境使露点温度比太阳房高约3~5℃,从18:00~7:00,门内侧表面温度几乎等于露点温度,窗内侧表面温度则低于露点温度,出现结露现象,当室外气温低于-5℃时,结露现象非常严重,而相比之下太阳房从未出现过结露。
图5 空气间层和室内外相对湿度的逐时变化图
(a) 太阳房
(b) 对比房
图6 室内壁面温度和露点温度的逐时变化图
3.3 墙体内部水蒸气分压力分布
多孔介质的传湿过程是包含了气液两相流动、相变、热湿耦合传递等现象的复杂过程。前节已经对表面结露现象进行了分析,本文中为了简化对墙体内部传湿过程的分析,根据文献[12]介绍的稳态下纯蒸汽渗透过程的计算方法对太阳房的集热蓄热墙和对比房的南外墙内部水蒸气分压力进行了计算,具体计算方法如下:
1)根据墙体两侧空气的温度和集热蓄热墙体内三个测点的温度(见图3),做出相应的饱和水蒸汽分压力Ps的分布线。
2) 根据墙体两侧空气的温度和相对湿度,确定两侧空气的水蒸汽分压力Pi、Pe,并计算各层的水蒸汽分压力: m=2,3,4,……n
式中: H0—墙体的总蒸汽渗透阻, H0=H1 H2 H3 ……=
—任一分层的厚度,m;
—任一分层的材料的蒸汽渗透系数, g/(m·h·Pa)
i—室内;e—室外; —从室内一侧算起,由第一层至第m-1层的蒸汽渗透阻之和。
墙体结构见图2,计算结果如图7、图8所示。由图7可知,由于集热蓄热墙外侧空气层良好的吸湿作用及墙体本身的集热蓄热特性,墙体处于干燥状态,内部未出现凝结现象;而对比房的南外墙内部水蒸气分压力在0:00、6:00和18:00都比较接近饱和水蒸气分压力,计算结果显示也未产生内部凝结(见图8)。
图7 太阳房东西两侧集热蓄热墙体的水蒸气分压力分布
图8 对比房南外墙水蒸气分压力分布图
以上的计算仅仅是近似的分析,而实际上,在含湿多孔材料的含湿量中液态水所占的比例远大于气相,需要应用水蒸气和液态水同时传递的湿迁移混合模型进行求解。在该模型中,由于涉及到相变系数,该系数的确定完全依赖于湿迁移过程中水蒸汽和液态水各自的传递速率,所以确定它很困难。
3.4 与室外的关系
图9表示太阳房和对比房2003年11月~2004年2月的室内外相对湿度的相关变化图。
由图可知,当室外相对湿度增加时,室内相对湿度几乎没有明显的变化,这可以认为是由于实验房均采用外保温,外保温材料聚苯板的蒸汽渗透系数很小,湿气很难通过围护结构向室内传递,另外由于实验过程中门窗几乎都呈关闭状态,所以室内的相对湿度受室外的影响很小。
3.5 室内舒适性比较
由于实验房是刚刚竣工的房屋,虽然室内没有产湿源,但墙体内含水率很高,太阳房和对比房室内相对湿度比相同地点的采暖房间高20~50%。2004年春节前后,大连遇到了罕见的持续低温天气,室外气温达-14~-17℃,在未采取任何采暖措施的情况下,实验房两间房间的室内温度仍保持在9~11℃左右。虽然太阳房和对比房室内温度相差不大(1~1.5℃),但由于壁面温度和室内相对湿度存在较大差异,室内热舒适感觉明显不同。对比房始终给人一种气闷的感觉,而太阳房感觉比较舒适。
原文网址:http://www.pipcn.com/research/200606/8576.htm
也许您还喜欢阅读: