首页建筑研究 专题列表

蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析

收录时间:2008-08-27 12:33 来源:建筑中文网  作者:碧森尤信  阅读:0次 评论:0我要评论

内容提示:本文在拥分析的基础上提出了制冷机组双冷凝器设计和冷凝热焓差再分配的概念。以某饭店的一台电动蒸汽压缩式水冷制冷机组为例综合分析了进出机组的能量流和拥流。分析结果显示蒸汽压缩式制冷机组的拥损失源于蒸汽压缩制冷原理固有的缺陷,冷凝排出的热是机组主要的拥损失之一。在简要分析了已提出的各种冷凝热回收理论和技术的特点的基础上,提出了一种空调系统节能的新方法,采用两级冷凝直接回收制冷机组的冷凝热,并以此为

延伸阅读:制冷机组 双冷凝器 热回收

    1 前言

    目前评价制冷机组的能耗性能的指标有两个:COP或EER。COP和EER的值代表了制冷机组在某一工作状态下单位能耗所产出的冷量。但这两种指标是以能量守恒定律为出发点的,将不同质和量的能量等量齐观。如果站在第二定律的角度来看,它们掩盖了能量转换过程的本质,并不能反映制冷机组能源消耗的真实情况。制冷量与输入能量之间的质和量是不等价的[1]。对于制冷机来说,冷量的做功能力很低,只是低质能,而输入能量一般是化石能源或电能,几乎可以全部转化为功,是高质能。从能级的观点看,能源利用的一个原则就是能级匹配,使产出能与投入能的品质尽量接近。显然,如果用高质能源来生产低质能源是不合算的。从这一点来说,制冷机组的节能潜力还是有很大的。如果我们用拥分析方法来考察制冷机组的能源消耗情况,就可以找出节能的有效方法。拥是以热力学第一和第二定律为基础的,包含了能量的质和量两个方面的信息,是能量定价的基础。不同质和量的能量在拥分析方法的基础上可以相互比较。节能的本质就是节拥和梯级用拥[3]。(参考《建筑中文网

2 模型分析

    空调系统中制冷机组的功能是通过排除建筑内部多余的得热量来实现其热舒适性。制冷机组节能的途径从根本上还必须去机组内部寻求。空调制冷机组的原理是逆卡诺循环。对于水冷蒸汽压缩式机组而言,制冷的原理如图5所示[14]。1─2─3′─4─4′─5─1曲线表示理论制冷循环流程。1′─1″─a─b─c─2′─3─4─4′─1′曲线代表实际的制冷循环流程。理论循环与实际循环的这种差别是有多种原因引起的,例如压缩机对外传热及运动摩擦、进气阀和排气阀的节流作用、蒸发器和冷凝器以及导管的传热和摩擦等等。1′─1”─a─b─c─2′─3─4─4′─5′─1曲线所围成的区域的面积与输入功率W成正比,9─c─2─3′─4─4′─6─9曲线所未成的区域的面积与冷凝热Qco成正比。在4′─1′过程中,蒸发器从冷冻水中吸收热量Qch,同时制冷剂变为气态,这Qch就是制冷机组产生的制冷量。c′─c─d─2′─3─3′曲线代表冷凝器中制冷剂向冷却水发出热量Qco的过程。冷却塔中冷却水的进出口温差一般为5─7℃。一般说来,冷凝热Qco大约是蒸发热Qch的1.2倍。因此冷凝热是很丰富的,其品位很低。压缩过程a—b—c’需要消耗输入功W。

    以电动水冷蒸汽压缩式制冷机组为例,考虑机组整体的拥流,不考虑机组内部各部件的拥流。制冷机组的拥流和能流模型可以简化如图1和图2所示(能流和拥流的方向为假设)。

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析

    按照热力学第一定律,能流过程中冷凝热Qco等于蒸发热Qch与输入功率之和。在拥流过程中,输入功率拥W转换为冷量拥Ech和热量拥Eco,分别送往用户末端和冷却塔。

3 热力学分析

    由于将制冷机组作为一个整体考虑。拥的概念是与研究对象所处的环境密切相关的,在分析时将制冷机组及其周围的环境划分为一个系统,不考虑制冷机组内部的拥流和能流。

    3.1 能流分析

    对于任何系统,热力学第一定律总是成立的,一次可建立如下方程:

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析 (1)

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析 (2)

    3.2 拥流分析

    按照热力学第二定律,系统的拥总是在不断的减少过程中,因此有:

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析 (3)

    等号在可逆工况下成立,而在实际运行工况下,系统总是朝着熵增的过程进行,也就是拥不断减少[16]。

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析 (4)

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析 (5)

    工作介质—水,无论是冷冻水还是冷却水,都是难压缩介质。热力学方程蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析总是成立的,而蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析, 蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析[16]。因此我们可以认为cp = cv = c, c为定值比热。

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析 (13)

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析 (14)

    可以用两个拥效率来表征制冷机组的热力学完善程度,一个是普遍拥效率蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析,另一个是目的拥效率蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析[1]。蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析用以下两个表达式表达[1]:

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析 (15)

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析 (16)

    普遍拥效率蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析表征了制冷机组能量转换过程中代价拥有多少转化为产出拥。蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析越大,表明机组的拥损失越小,机组的性能也越好。目的拥效率蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析则表征了代价拥中有多少转化为产品拥,表明了制冷流程的合理程度。蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析越大,表明产品拥的产率越大。蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析越高越接近,机组性能也越好。如果仔细地分析了蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析、蒸发器和冷凝器水侧拥流,就可以真正找到空调冷热源节能的途径。

    3.3 两级冷凝热回收原理

    在很多公共建筑中,生活热水一般是由热水锅炉供应单独的。按照国家标准,生活热水的出水温度范围一般在40℃~45℃。而换热器设计出水温度达到60℃。生活热水锅炉一般都会按照历年最不利用水条件选取,一般冬季用水量最大,而夏季用水量很小。因此在夏季一方面锅炉在很低的效率下运行,另一方面大量空调冷凝热被直接排放掉了。能不能直接利用制冷机组的冷凝热生产生活热水呢?在图6中,制冷剂在c点的温度一般都会65℃以上波动。如果在压缩机和冷凝器之间加一个热交换器(原理如图3虚线所示),那么就可以吸收大量的冷凝热来生产生活热水。从这个外加的热交换器出来的制冷剂的状态是汽—液混合物,处于如图6所示的x点。汽—液混合物在冷凝器中进一步冷凝到4′点。改造前冷凝负荷为:

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析 (17)

    改造后,外加热交换器的热交换量为:

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析 (18)

    冷凝器的负荷变为:

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析 (19)

    由此可见,制冷剂的冷凝焓降进行了再分配[17]。由于机组的冷凝能力增加了,制冷剂的过冷度增大,相应于4′点沿着饱和液体线下降。输入功率和制冷量、蒸发器的蒸发负荷会上升。x点的选择必须避免压缩机发生湿压缩现象。因此就一定存在一个最优的x点能够在最小寿命周期成本和最优机组性能之间达成平衡。可以预测采用该技术后结果是生活热水的锅炉负荷降低,甚至在夏季可以关闭;热力站的年度运行成本大大降低。

    图4表明了改造后机组的拥流图。因此相应的蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析的表达式变为:

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析 (20)

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析 (21)

    利用制冷机组的冷凝热生产生活热水的设想早在1965年就有Healy [23]等人提出,70年代以后Mason、W. M. Ying、K. C. Toh [24][25]等人针对家用空调进行了相关实验研究和分析,在夏威夷地区进行了大规模推广[26],研究和推广结果显示其节能效果非常显著。国内外一些空调设备制造商研制出了可回收冷凝热的双管束冷凝器制冷机组(如图5),该方法只能回收部分高位冷凝热。按拥的梯级利用原则来看,目前已经存在的回收冷却水废热的技术和双管束冷凝器热回收技术都是有缺陷的。

    3.4 实例分析

    为了验证以上构思,我们选择长沙市某四星级饭店一台四机头活塞式制冷机组为对象,制冷剂为R22。我们根据对该机组的拥分析结果于2001年对其进行了改造。该制冷机组常年每天24小时运行。同时全年由热水锅炉负责供应生活热水。夏季该锅炉容量严重超大。改造后该锅炉夏季关闭。

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析

    改造过程中,我们在每个压缩机的排气口与冷凝器之间增加了一个生活热水生产部件,其核心是一个热交换器。该部件通过吸收压缩机排气的部分冷凝热提升热水温度来生产生活热水。改造后该部件每小时生产50℃的热水6吨,热水温升30℃。经计算热水拥增Elth为5.93KW。

    热水吸收的热量与热水拥增值差等于从冷却水中吸收的芜。我们分析了改造前后制冷机组的COP和蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析。COP的定义改造前为制冷量与输入功率之比,改造后为制冷量和热回收量之和与输入功率之比。测试时间是2000年9月和2001年9月。所有测试数据都经过处理后图示在图7至图16中。图中平均室外温度指测量时段内的室外平均温度。

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析

   

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析

    蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析 

4 结果与讨论

    4.1 COP、效率的变化趋势

    无论改造前还是改造后,蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析都不是很高,其原因有三:一、蒸发器和冷凝器的换热温差太大;二、管路阻力和节流效应;三、散热和热排放。改造前目的拥效率在6.6%至12.5%之间波动,改造后在11.5%至16%之间波动。改造前普遍拥效率在12%至20%之间波动,改造后在16%至24%之间波动。这说明制冷机组的能源利用程度很低,节能的潜力还很大。COP的波动在改造前为1.5至2.3之间,改造后在2至3.2之间,说明改造后继续性能得到改善。改造前后蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析、COP的变化基本与平均室外温度的变化相似。这是因为制冷负荷与拥是与室外环境温度紧密联系的。总的来说改造后COP、蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析蒸汽压缩式水冷机组的双冷凝器热回收及其拥分析都升高了,这是因为改造后,产品拥增加了,而输入拥增长不大。因此制冷机组的直接和间接节能效应都提高了。

原文网址:http://www.pipcn.com/research/200808/13697.htm

也许您还喜欢阅读:

公共建筑空调节能设计的探讨


【重要声明】本作品版权归建筑中文网和作者所有,允许以学习、研究之目的转载、复制和传播,但必须在明显位置注明原文出处和作者署名(请参考以下引文格式)且保证内容一致性,不得用于出售、出版、付费数据库或其它商业目的,本站保留追究一切法律责任的权利。投稿信箱
引用复制:网址 QQ/MSN 论文/著作 HTML代码

请告诉我们

请告诉我们您的知识需求以及对本站的评价与建议。
满意 不满意

Email: