首页建筑研究 专题列表

欧洲城市污水处理技术新概念--可持续生物除磷脱氮工艺(上)

收录时间:2006-07-25 01:40 来源:建筑中文网  作者:碧森尤信  阅读:0次 评论:0我要评论

内容提示:传统污水处理工艺以能消能,消耗大量有机碳源,剩余污泥产量大,同时释放较多CO2(因耗能)到大气之中。当今,全球普遍强调的可持续发展经济模式在污水处理领域也得到体现。因此,研发以节省能(资)源消耗、并最大程度回收(用)有用能(资)源的可持续污水处理工艺已势在必行,在详细介绍两种新近在欧洲出现的可持续处理工艺——反硝化除磷、厌氧氨(氮)氧化的基础上,提出一个以转换有机能源(甲烷)、回收磷酸盐(鸟

延伸阅读:欧洲 污水处理技术 脱氮 除磷

    摘要:传统污水处理工艺以能消能,消耗大量有机碳源,剩余污泥产量大,同时释放较多CO2(因耗能)到大气之中。当今,全球普遍强调的可持续发展经济模式在污水处理领域也得到体现。因此,研发以节省能(资)源消耗、并最大程度回收(用)有用能(资)源的可持续污水处理工艺已势在必行,在详细介绍两种新近在欧洲出现的可持续处理工艺——反硝化除磷、厌氧氨(氮)氧化的基础上,提出一个以转换有机能源(甲烷)、回收磷酸盐(鸟粪石)、回用处理水(非饮用目的)为目标的可持续城市污水生物除磷脱氮推荐工艺。(参考《建筑中文网

    关键词:欧洲 污水处理技术 除磷 脱氮

    当今世界,污水处理的主要对象为有机物(COD)、氨氮和磷酸盐。传统上,COD和氨氮的脱除一般由生物氧化和硝化/反硝化完成;磷酸盐或通过细菌的生物聚集、或靠化学沉淀去除。传统工艺存在以下弊端:

    ①COD氧化和硝化耗能巨大,且在COD氧化中,无形中失去贮存在COD内的大量化学能(每kg COD约含1.4×107J代谢热);②反硝化与磷的生物聚集均需消耗COD;③剩余污泥量大;④耗能造成大量二氧化碳释放,并进入大气。

    污水排放标准的不断收紧是目前世界各国普遍的发展趋势;以控制富营养化为目的的氮、磷脱除已成为各国主要的奋斗目标。无疑,应付日趋严格的排放标准,传统工艺会因上述弊端而雪上加霜[1]。在此情形下,发展可持续污水处理工艺变得势在必行。所谓可持续污水处理工艺就是朝着最小的COD氧化、最低的CO2释放、最少的剩余污泥产量以及实现磷回收和处理水回用等方向努力。这就需要以较综合的方式来解决污水处理问题,即污水处理不应仅仅是满足单一的水质改善,同时也需要一并考虑污水及所含污染物的资源化和能源化问题,且所采用的技术必须以低能量消耗(避免出现污染转移现象)、少资源损耗为前提。

    发展新颖的污水生物处理工艺依赖于在微生物学及生物化学方面的新发现或新认识。荷兰研究人员Mulder[2]在10年前发现了厌氧氨(氮)氧化现象。与此同时,南非、荷兰、日本等国科学家对生物摄/放磷代谢机理重新认识后确定了反硝化除磷新途径[4~5]。这两种新技术的研发与应用对发展可持续污水生物处理工艺具有划时代意义的推动作用。本文以厌氧氨氧化和反硝化除磷技术为蓝本,详细介绍它们的技术原理、工艺流程以及在欧洲的应用情况;在此基础之上提出一个以转换有机能源(甲烷)、回收磷化合物(鸟粪石)和回用处理水(非饮用目的)为目标的可持续城市污水生物除磷脱氮技术推荐工艺。

    1、可持续生物除磷脱氮工艺技术基础

    目前欧洲以单一去除COD为目的的污水处理工艺已不多见,代之以除磷脱氮为主要对象的生物营养物去除(BNR,Biological Nutrient Removal)工艺。一方面,这是迫于污水排放标准不断提高的压力;另一方面,COD氧化以能消能,同可持续污水处理概念相悖。从这个意义上说,污水处理过程中应最大限度地降低COD消耗量并使过剩的COD甲烷化。这样一个概念对实现可持续污水处理起着举足轻重的作用。

    在污水生物除磷实践中,南非开普顿大学(UCT)研究人员最早发现专性好氧细菌不是唯一对磷的生物摄/放起作用的菌种,兼性反硝化细菌也有着很强的生物摄/放磷现象[3]。反硝化细菌的生物摄/放磷作用被荷兰代尔夫特工业大学(TU Delft)和日本东京大学(UT )研究人员合作研究确认,并冠名为反硝化除磷(denitrifying dephosphatation)[4~5]。在磷的生物摄/放过程中,反硝化除磷细菌以硝酸氮取代氧作为电子接受体,也就是说反硝化除磷细菌能将反硝化脱氮和生物除磷这两个原本认为彼此独立的作用合二为一。显然,在结合的除磷脱氮过程中,COD和氧的消耗量均能得到相应节省。比较传统的专性好氧磷细菌去除工艺,反硝化除磷细菌能分别节省约50%和30%的COD与氧的消耗量,相应减少剩余污泥量50%[4,6]。在反硝化除磷过程中由于COD需要量的大为减少,过剩的COD因此能被分离,并使之甲烷化,从而避免COD单一的氧化稳定(至CO2)。归因于曝气能量的减少,以及过剩COD甲烷化后能量的产生,这种综合的能量节约最终会导致释放到大气的CO2量明显减少。因此,具有反硝化除磷细菌富集的处理系统可以被视为可持续处理工艺。

    传统上,两个已得到充分确认的生物途径,硝化(NH 4→NO3-)与反硝化 (NO3→N2)被应用于污水处理的生物脱氮。这种传统生物脱氮途径从可持续角度看并不是最佳的,因为充分地氧化氨氮到硝酸氮首先要消耗大量能源(因曝气);其次,还需要有足够碳源 (COD)来还原硝酸氮到氮气。对这一传统脱氮途径的改进可借助于新近由荷兰TU Delft研发的一种中温亚硝化技术——SHARON来实现[7]。在亚硝化/反硝化脱氮途径中,亚硝酸氮为仅有的中间过渡形态;这一途径无论对氧化(NH 4→NO2-)还是还原 (NO2-→N2)均能起到最小量化的作用,意味着O2和COD消耗量的双重节约。显然,亚硝化 /反硝化脱氮途径可以成为一种可持续的脱氮技术。

    此外,荷兰TU Delft研究人员几乎在同一时期还试验确认了一种新的氨氮转换途径,这使得氨氮以亚硝酸氮作为电子接受体而被直接氧化至氮气成为可能[2,7]。这种厌氧条件下的氨氮氧化与亚硝化过程(如SHARON工艺)相结合在工程上能够实现氨氮的最短途径转换,这就意味着生物脱氮过程中能源与资源消耗量的最小化完全可能。污水处理过程中氮的所有可能转换途径列于图1.与传统脱氮工艺相比较,很明显,由厌氧氨氧化与亚硝化工艺相结合的氮的完全自养转换方式是一种最可持续的污水脱氮途径。

    欧洲城市污水处理技术新概念--可持续生物除磷脱氮工艺(上)

    图1 污水生物脱氮的可能途径

    2、反硝化除磷原理与工程实践

    2.1 生物除磷代谢模型

    从印度研究人员Srinath等人于1959年首次提及污水生物除磷现象以来[8],各国科学家对生物除磷机理进行了长达20余年的摸索研究。然而,早期生物除磷研究往往以实际污水处理工艺为主要研究对象,且注意力大多集中于好氧条件下的生物摄磷过程,并没有在意磷的厌氧释放同好氧摄取之间的关系。直到上世纪80年代初,荷兰研究人员Rensink才首次报道了好氧摄磷与厌氧放磷过程之间存在着某种必然联系[9]。在此基础上,生物除磷的一个完整生化代谢模型才由后续一些科学家完善、定型。图2显示了这个已基本定型的生物除磷生化代谢模型[5,10]。

    欧洲城市污水处理技术新概念--可持续生物除磷脱氮工艺(上)

    图2 生物除磷生化代谢模型

    HAc 醋酸(COD) Glycogen 糖原 Poly-P 多聚磷酸盐 ATP 三磷酸腺甙 PHB 聚-β-羟基-丁酸酯 NADH2 烟酰胺腺嘌呤二核苷酸(辅酶)

    一般认为,污水中的基质(COD)首先在厌氧条件下被转化为细菌细胞内的聚合物质——PHA( 即PHB PHV,以PHB为主要成分),这个过程籍细胞内多聚磷酸盐来提供所需能量。结果,磷酸盐被释放到细胞之外。当环境改变为好氧条件后,由于环境中缺乏COD而使得在厌氧条件下贮存的PHB被用来充当基质。籍基质所提供的能量,细菌在此条件下过量摄取环境中的磷酸盐而在细胞内形成多聚磷酸盐,细菌同时得到增殖。此外,在好氧条件下糖源也得到补充。在好氧条件后分离增殖的细菌,磷便能随细菌细胞而被排除。聚磷细菌PAOs(Phosphate Accum ulating Organisms)细胞内的磷含量可高达12%(以细胞干重计),而普通细菌细胞的磷含量仅为1%~3%[10]。可见,生物聚磷后的细菌分离可有效将污水中的磷酸盐脱除。

    兼性反硝化细菌生物摄/放磷作用被确认不仅拓宽了磷的去除途径,而且,更重要的是这种细菌的生物摄/放磷作用将反硝化脱氮与生物除磷有机地合二为一。这就为可持续污水处理工艺的发展奠定了十分有力的技术基础。如图2所示,在缺氧(无氧但存在硝酸氮)条件下,反硝化除磷细菌DPB(Denitrifying Phosphorusremoving Bacteria)能够象在好氧条件下一样,利用硝酸氮充当电子受体,产生同样的生物摄磷作用。在生物摄磷的同时,硝酸氮被还原为氮气。显然,被DPB合并后的反硝化除磷过程能够节省相当的COD与曝气量,同时也意味着较少的细胞合成量。

    2.2 反硝化除磷工艺

    事实上,在早先应用的UCT(University of Cape Town)等生物脱氮除磷工艺中存在着一定数量的DPB,只不过当时没有被人们认识而已。在实际工程中,为最大程度地从工艺角度创造DPB的富集条件,一种变型的UCT工艺——BCFS在荷兰应运而生[11~12]。实际上,BCFS工艺以荷兰早年研发的氧化沟(污泥龄同氧化沟)和南非发明的UCT工艺原理为基础,将UCT反应池扩展为5个,具有3个内循环和1个被结合的化学除磷单元。BCFS工艺流程详见图3.

原文网址:http://www.pipcn.com/research/200607/8664.htm

也许您还喜欢阅读:

欧洲城市污水处理技术新概念--可持续生物除磷脱氮工艺(下)

人工湿地除磷综述

法国建筑与欧洲建筑史的关系

外国近现代建筑分析

国外农业旅游发展状况及对上海的启示

国外ERP项目实施“误”在哪?

德国及欧洲近50年的城市发展进程

英吉利海峡隧道工程项目的特点与成败关键

中国传统建筑的文化反思

浅谈中国河湖水处理的理论和实践的融合


【重要声明】本作品版权归建筑中文网和作者所有,允许以学习、研究之目的转载、复制和传播,但必须在明显位置注明原文出处和作者署名(请参考以下引文格式)且保证内容一致性,不得用于出售、出版、付费数据库或其它商业目的,本站保留追究一切法律责任的权利。投稿信箱
引用复制:网址 QQ/MSN 论文/著作 HTML代码

请告诉我们

请告诉我们您的知识需求以及对本站的评价与建议。
满意 不满意

Email: